Thursday, June 26, 2008
Calorie Restriction and DNA Damage
We know that calorie restriction slows the accumulation of nuclear DNA damage - possibly by enhancing DNA repair mechanisms - just as it slows more or less every other age-related change of interest that scientists have investigated. The degree to which ongoing random damage to nuclear DNA contributes to degenerative aging is debated, however: A paper by Aubrey de Grey outlines his view of nuclear DNA damage and aging: "Since Szilard's seminal 1959 article, the role of accumulating nuclear DNA (nDNA) damage - whether as mutations, i.e. changes to sequence, or as epimutations, i.e. adventitious but persistent alterations to methylation and other decorations of nDNA and histones - has been widely touted as likely to contribute substantially to the aging process throughout the animal kingdom. Such damage certainly accumulates with age and is central to one of the most prevalent age-related causes of death in mammals, namely cancer. However, its role in contributing to the rates of other aspects of aging is less clear. Here I argue that, in animals prone to cancer, evolutionary pressure to postpone cancer will drive the fidelity of nDNA maintenance and repair to a level greatly exceeding that needed to prevent nDNA damage from reaching...